Generalizations of Fourier analysis

When I first learned about Fourier series and integrals, I hated it because it seemed
like a collection of many ad-hoc definitions, formally related but very different.

To have a wider view of the subject, it helped me to realize that Fourier series
and integrals are a particular case of not one, but many different constructions.
Thus, they can be generalized in widely different directions, leading to differently
flavored views of the original theory.

¢ First you have the four classic cases that you may learn in school: Fourier
series of periodic functions, Fourier transforms of integrable functions, the
discrete-time Fourier transform and the discrete Fourier transform. These
four classic cases are fundamental and you must learn their definition and
properties by heart.

e Then, you learn sampling theory and you see that some of the classic
cases may be obtained from the others. For example, the discrete Fourier
transform can be considered a particular case of Fourier series of a periodic
function. These relationships can be neatly arranged in the so-called Fourier-
Poisson cube.

¢ Later, you learn distribution theory, that provides a common framework
for signals and their samples using Dirac combs. Thus each of the four
classic cases arises as a particular case of the Fourier transform of tempered
distributions on the real line.

* A very different generalization is given by Pontryagin duality. This begins
by realizing that the domain of definition of each classic case has always the
structure of a commutative group (R, Z, § Lor Z/NZ). Then, Pontryagin
duality provides a general construction for Fourier analysis on commutative
groups, and the four classic cases are particular cases of it.

* By relaxing the condition of commutativity, you get non-commutative
harmonic analysis. The case of a compact non-commutative group
is described completely by the Paley-Wiener theorem, and the general
non-compact non-commutative case is a large problem in representation
theory, of which much is known; especially if the group has some additional
structure (semisimple, solvable).

* The next step is harmonic analysis on homogeneous spaces. It turns out
that the group structure is not essential, and you can do almost everything
just by having a group acting on your space, which need not be itself a



group. For example, the sphere S? is not a group, but there is the group
of 3D rotations acting over it, and this leads to spherical harmonics.

¢ Finally there is spectral geometry, also called the spectral analysis of the
Laplace-Beltrami operator. If your space is just a potato (a compact Rieman-
nian manifold), there is no group whatsoever acting on it, but you still have
a Laplace-Beltrami operator, it has a discrete spectrum, and you can do the
analogue of Fourier series on it. A large part of the classic results of Fourier
series extend to this case, except everything related to convolution—which
is defined necessarily using the group structure.

Thus, what happens when you ask a mathematician, “what is Fourier analysis?” ?

If they are a real analyst, they will say that Fourier analysis are a set of examples
in the study of tempered distributions.

If they are an algebraist, they will say that Fourier analysis is a very particular
case of one-dimensional representation theory.

If they are a geometer, they will say that Fourier analysis is a particular case of
spectral geometry for trivial flat manifolds.

Finally, if you ask a complex analyst, they will say that Fourier series are just
Taylor series evaluated on the unit circle.

And all of them will be right.

1 The four classic cases

The classic cases of Fourier analysis are used to express an arbitrary function f(x)
as a linear combination of sinusoidal functions of the form x — ¢¢*. There are
four cases, depending on the space where x belongs.

1.1 Fourier series

Any periodic function
f:8' >R
can be expressed as a numerable linear combination of sinusoidal waves. This is

called the Fourier series of f
f(e) — Z aﬂginé?

neZ

and the coefficients a, are computed as integrals of f

_ 1 —inf
@ =g ./Sl f(0)e"do



1.2 Fourier transform

An arbitrary (integrable) function
f:R—>R

can be expressed as a linear combination of sinusoidal waves. The coefficients of
this linear combination are called the Fourier integral of f, also known as Fourier
transform or characteristic function of f, depending on the context. Thus, f is
represented as

Fx) = /R a(€)e"E dé

This is exactly analogous to the Fourier series above, but now the coefficients a
of the linear combination are indexed by a continuous index ¢ € R instead of a
discrete index n € Z. The values of a(¢) can be recovered by integrating again
the function f:

o) = 5= [ oo

Notice that, even if their formulas look quite similar, the Fourier series is not a
particular case of the Fourier transform. For example, a periodic function is never
integrable over the real line unless it is identically zero. Thus, you cannot compute
the Fourier transform of a periodic function.

1.3 Discrete Fourier transform

In the finite case, you can express any vector

(f fos - - IN) (1)

as a linear combination of "oscillating” vectors:

f}c —_ Zale%ﬂikl (2)

!

This is called the discrete Fourier transform. The coefficients a; can be recovered by
inverting the matrix My, = e ¥k which is unitary. Thus

1 o,
dz=ﬁ2ﬁce % ikl
k

1.4 Discrete-time Fourier transform

Finally, if you have a doubly-infinite sequence:

S f fo i S (3)

you can express it as a linear combination (integral) of sinusoidal functions sam-
pled at the integers, which is quite a thing:

— inf
fu= [ ato)as ®



The coefficients a(0) of this infinite linear combination can be recovered as a linear
combination of all the values of f:

a0)= 5= 3 o™ 5

Notice these two formulas are exactly the same as Fourier series, but reversing the
roles of ¢ and f. This is an important symmetry.

2 Pontryagin duality

Pontryagin duality extracts the essence of the definitions of Fourier series, Fourier
integrals and discrete Fourier transforms. The main idea is that we have a spatial
domain G and a frequency domain G*. Then, any function defined on the spatial
domain

fiGoR (6)

can be expressed as a linear combination of certain functions E, indexed by the
frequencies

7= [ ate)p e 7

Here the coefficients a depend on the function f but the functions £ depend only
on the group G; they are called the characters of G. The coeflicients a can be found
by computing integrals over the spatial domain:

a(¢) = /G F() B E)dé @®)

where the bar denotes complex conjugation. Notice that these formulas include
Fourier series, Fourier integrals, the DFT and the DTFT as particular cases, ac-
cording to the following table
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2.1 Locally compact abelian groups

A topological group is a group together with a topology compatible with the group
operation. A morphism between two topological groups is a mapping which is at



the same time continuous and a group morphism. Here we are interested in locally
compact abelian groups (LCAG). We will denote the group operation by x + y,
and the inverse of a group element x by —x.

The canonical example of LCAG is R” with the usual topology and the operation
of sum of vectors. Another example of LCAG is the multiplicative group U of
complex numbers of norm 1, which topologically coincides with the unit circle
S1. Other examples are any finite abelian group with the discrete topology; or Z,
the additive group of integers with the discrete topology.

The group U is very important in the following discussion. It can be denoted
multiplicatively (by considering its elements as complex numbers), or additively
(by considering its elements as angles). Both notations are used henceforth, and
they are linked by the relation

giaeiﬁ — ei(a+ﬁ)

2.2 Characters and the dual group

Let G be a LCAG. A character of G is a morphism from G to U. The set G’ of all
characters of G is a group (with the operation of pointwise sum of mappings) and
also a topological space (with the topology of compact convergence). It turns out
that this group is locally compact, thus it is a LCAG. It is called the dual group of
G. There is a canonical morphism between G and its bidual, and it can be seen
easily that this morphism is injective. The Pontryagin duality theorem states that
G is isomorphic to its bidual. Another result states that G is compact if an only if
its dual is discrete.

For example, the dual group of R” is itself. The integers Z and the unit circle
U are dual to each other. The dual of any finite group is isomorphic (though
non-canonically) to itself.

The action of a character ¢ € G’ over a group element x € G is denoted by E(¢, x)
or even ¢’**. In the latter case, the complex conjugate of ¢¢* is denoted by ¢~%¢*.
The exponential notation is justified by the following properties, arising from the
definitions

+ E(£,x) is a unit complex number, thus it has the form ¢!’ for some real
number 6

o E(¢ x+y)=E(£ x)E(£,y), by the definition of character

o E(¢ +1n,x) = E(, x)E(, x), by the definition of dual group

2.3 Haar measures

Let G be a LCAG. A non-vanishing measure over G which is invariant by transla-
tions is called a Haar measure. Haar’s theorem states that there is a single Haar
measure modulo multiplication by positive constants. Another result states that
G is compact if and only if its total Haar measure (any one of them) is finite.



For example, Lebesgue measure on R” is a Haar measure. The counting measure
of a discrete group is a Haar measure.

Given G, we fix a single Haar measure and we can talk about the spaces L/(G).
The elements of this space are complex-valued functions such that the pth power
of their norm has finite integral with respect to Haar’s measure. Notice that the
set L?(G) does not depend on the actual choice of normalization factor selected
for the definition of the Haar measure.

2.4 Fourier transform

Now we can define a general notion of Fourier transforms, for functions belonging
to the space L'(G). The Fourier transform of a function

f:G—>C (9)
is a function
f:6"=>cC (10)
defined by
f©= [ faeieras (1)
G

Here ¢7** denotes the conjugate of the complex number ¢** = E(& x). The
inverse transform of a function defined on G’ is defined similarly, but without the
conjugate:

Fw = [ rera (12)

Note that these definitions require selecting Haar measures on G and G’ (this
amounts to fixing two arbitrary constants).

2.5 Harmonic analysis on locally compact abelian groups

So far we have just given definitions: LCAG, characters, dual group, Haar measure,
and Fourier transform. Now it is time to recover the main results of harmonic
analysis.

The first result is the Fourier inversion theorem for L(G), which states that the
inverse transform is actually the inverse, for an appropriate choice of scaling of
the Haar measures on G and G’. Such a pair of measures are called harmonized,
or dual to each other. In the following, when we state a result involving integrals
on G and G’ we will always assume that the Haar measures are harmonized.

The second result is the energy conservation theorem for Z%(G), which states
that, when f and f are square-integrable, we have

1 ez = 1 Nlz2er) (13)

Particular cases of this theorem are the formulas of Parseval, Plancherel, etc. The
energy conservation theorem is needed to extend by continuity the definition of
Fourier transforms to L*(G)



The third result is the convolution theorem. First notice that the group structure
allows to define the convolution of any two functions on L}(G):

[f = gl(x) = /G Fglx—ydy (14)

Now, the convolution theorem says that the Fourier transform takes convolution
to point-wise multiplication

frg=Ffi& (15)

There is a long list of results, that can be found elsewhere. Let us mention a last
one. The dual group G’ is itself a LCAG, so it has a Fourier transform in its own
right. This mapping is the L? adjoint of the inverse Fourier transform defined
from G.

Finally, notice that in the case of finite groups all these results are trivial and they
amount to elementary linear algebra. In the continuous case they are not trivial,
mainly because we don’t have an identity element for the convolution (e.g., the
dirac delta function), and to prove the results one has to resort to successive
approximations of the identity.

The sequence of proofs typically starts by the convolution theorem, which is used
to prove the conservation of energy for functions that belong to L! n L2, then
to extend by density the definition of the Fourier transform to Z? and finally to
prove the inversion theorem. Except the definition of the Haar measure and the
approximation of the identity, which are particular construction, the rest of the
proofs are identical to the corresponding proofs for the case of Fourier transforms
on the real line. You just have to check that all the steps on the proof make sense
in a group.

3 Sampling theory

Pontryagin duality gives an unified treatment of the four classic cases in Fourier
analysis: you are always doing exactly the same thing, but in different groups.
However, it does not say anything about the direct relationship between them.
For example, a Fourier series where all but a finite number of the coefficients is
zero can be represented as a vector of length N. Does it have any relationship
with the discrete Fourier transform on Zy? The answer is yes, and it is the main
result of sampling theory.

Let us start with precisely this case. Suppose that we have a periodic function f(6)
whose Fourier series is finite (this is called a trigonometric polynomial). For ex-
ample,

N-1
£O)=" fue™
n=0
Now, we can do three different things with this object. One, we can express the
coefficients f, as integrals of f:
1 21

fo=— f(@)e"do
27'1' 0



Two, we can consider the vector of coefficients (fy, ..., fy—1) and compute its
inverse DFT

N-1
ﬁc _ Zf eZm’nk/N
= n
n=0

and three, just for fun, we can evaluate the function f at N points evenly spaced
along its period

f(27;\1.0)’f(27;\7.1)’]{(27;\/'2)""f(%(];]\/_l))

These three operations are, a-priori, unrelated. At least, Pontryagin duality does
not say anything about them, you are working with different groups .§ Tand Zy
that have nothing to do with each other.

However, a number of very funny coincidences can be observed:

1. The £-th sample f (%) equals

N-1

Z f eQm‘kn/N
n

n=0
which is exactly ﬁ

2. Thus, the vector of samples of the polynomial f is the IDFT of the vector
of coeflicients

3. Correspondingly, the vector of N coefficients of the polynomial f is the DFT
of the vector of N uniform samples of f between 0 and 27.

4. In other words, the complete Fourier series of f can be obtained by evalu-
ating the function f at N points.

5. If you approximate the integral that evaluates f, from f as a sum of N step
functions obtained by sampling f, the computation is exact.

All these results lie at the core of sampling theory. They provide a beautiful,
analog interpretation of the definition of the discrete Fourier transform. In fact,
regardless of the definition using group characters, we could have defined the
discrete fourier transform using these results! (property 3 above).

The sampling theorem takes many different forms, but it always amounts to a
conservation of information, or conservation of degrees of freedom. Thus, the
properties above can be rephrased as

1. Evaluating a trigonometric polynomial of N coefficients at N points is a
linear map CV — C¥

2. This linear map is invertible if and only if the points are different (thus, the
function can be exactly recovered from N of its samples)



3. If the points are uniformly distributed, this linear map is the discrete Fourier
transform

The second statement is often called the sampling theorem. The condition that
to recover a polynomial of N coeflicients requires N samples is called the Nyquist
condition. Since it is natural to consider trigonometric polynomials of the form

N/2

PO)= ), puc™

n=-N/2

the Nyquist condition is often stated as the sampling rate must be at least the double
of the maximal frequency.

We have thus related Fourier series with the N-dimensional DFT, via the operation
of sampling at N point. The reasoning is finite and mostly trivial. There are a
lot more correspondences between the four classic cases. For example, Shannon-
Whittaker interpolation relates the Fourier transform with the discrete-time Fourier
transform: if the support of f lies inside the interval [-x, 7], then f can be recov-
ered exactly by the values f(Z). A different construction relates Fourier transforms
and Fourier series: if we have a rapidly decreasing function f(x), we can build
a 2m-periodic function by folding it:

F©O)=>" £0+2mn)

nez

and the Fourier series of f and the Fourier transform of f are closely related.

All these relationships between the four classic cases are neatly encoded in the
Fourier-Poisson cube, which is an awesome commutative diagram:
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Let us describe the folding operation. Suppose that ¢ is a rapidly decreasing
smooth function. We take a period P > 0 and define the function

¢p(x) = )" @(x + kP)

keZ



Since ¢ is rapidly decreasing, this series converges pointwise, and ¢p is a smooth
and P-periodic function. This folding operation transforms defined on R to func-
tions defined on R/27Z

Since ¢ is rapidly decreasing, we can compute it Fourier transform

~ov L —ixy
) %ﬁAﬂm d

The Poisson summation formula relates the Fourier transform of ¢ with the
Fourier series of ¢p. Let us derive it. Since ¢p is P-periodic, we can compute its

Fourier series .
2ninx

pp(x) = Z Cn €XP

neZ

which converges pointwise for any x since ¢p is smooth. The Fourier coefficients ¢,

are
—2mwinx

1 P
C”:F/O pp(x)exp P dx

by expanding the definition of ¢p:

cnzé‘/op(2<p(x+kP)

keZ

—2rinx
P

exp dx

and now, since ¢ is rapidly decreasing, we can interchange the sum and the inte-
gral, (for example, if ¢ is compactly supported, the sum is finite):

1 P —2minx
€y = 1_),;;./0 o(x + kP)exp 7 dx

now, by the change of variable y = x + kP,

1 (k+DP —2miny
C":I_DZ_/;CP o(y) exp 2 dy

keZ

where we have used the fact that exp is 27i-periodic to simplify ¢?"*** = 1. This
sum of integrals over contiguous intervals is simply an integral over R, thus

1 i Jn
o= [ o)y
P Jr
where we recognize the Fourier transform of ¢, thus

\/ﬂA(m)

n=—0—

P P

Replacing the coefficients ¢, into the Fourier series of ¢p we obtain the identity

Van 2nrn 2rinx

o(x + kP)= — [ﬁ(—) exp
2 )

10



which can be evaluated at x = 0 to give the Poisson summation formula

Sen) S 5.

keZ neZ

The particular case P = V2r is beautiful:
e (0 - 30 o)
keZ neZ

As we will see below, the language of distribution theory allows to express this
formula as

[1]
[r1)

Vor T S=vor
(the Fourier transform of a Dirac comb is a Dirac comb).

4 Distributions

Notice that most of sampling theory can be done without recourse to distributions.
Indeed, Shannon, Nyquist, Whittaker, Borel, all stated and proved their results
way before the invention of distributions. Nowadays, distribution theory provides
a satisfying framework to state all the classic sampling results in a unified form. It
is difficult to judge which method is simpler, because the classic sampling results
all have elementary proofs, while the detailed definition of tempered distributions
is a bit involved. It is better to be familiar with both possibilities.

In classical sampling theory, you sample a continuous function f : R — C by
evaluating it at a discrete set of points, for example Z, thus obtaining a sequence
of values ..., f(-2), f(-1), f(0), fQ), f(2), ..., which can be interpreted as a func-
tion f : Z — C. Thus, the sampling operation is a mapping between very different
spaces: from the continuous functions defined over R into the functions defined
over Z.

When you perform sampling using distributions, you sample a smooth func-
tion f by multiplying it by a Dirac comb. Thus, the sampling operation is linear
a mapping between subspaces of the same space: tempered distributions.

4.1 Distributions: overview

Distributions are an extension of functions just like the real numbers R are an
extension of the rationals Q. Most of the operations that can be done with Q
can be done with R, and then some more. Still, there is a price to pay: there
are some operations that only make sense on the smaller set. For example, while
the “denominator” function on Q cannot be extended meaningfully to R, the
elements of R can not be enumerated like those of Q, etc. However, if you want
to work with limits, the space Q is mostly useless and you need R.

There are a few spaces of distributions. The three most famous are

11



o P’ the space of all distributions
 §’ the space of tempered distributions

* €’ the space of compactly supported distributions

Each of these spaces is a huge generalization of an already very large space of
functions:

e 9’ contains all functions of LIIM

¢ §’ contains all functions of Lllw that are slowly growing (bounded, or going
to infinity at a polynomial rate)

¢ €’ contains all compactly supported integrable functions
Here L%M denotes the set of locally integrable functions, that is, complex-valued
functions such that fK |f] < +oo for any compact K.

These are the properties that we earn with respect to the original spaces:

* Most operations on functions extend naturally to distributions: sums, prod-
uct by scalars, product by a function, affine changes of variable

* Any distribution is infinitely derivable, and the derivative belongs to the
same space

* Any distribution is locally integrable
 The Fourier transform is an isometry in the space of tempered distributions

o There is a very easy to use definition of limit of distributions
And these are the prices to pay for the daring:

* You cannot evaluate a distribution at a point
* You cannot multiply two distributions

e There is no way to define a norm in the vector space of distributions

4.2 Distributions: definition

There are several, rather different, definitions of distribution. The most practical
definition today seems to be as the topological duals of spaces of test functions:

* P the space of all €~ functions of compact support
* § the space of all rapidly decreasing 6> functions

* € the space of all €™ functions

12



Notice that & and € make sense for functions defined over an arbitrary open set,
but § only makes sense on the whole real line.

The only problem with this is that the topologies on these spaces of test functions
are not trivial to construct. For example, there is no natural way to define useful
norms on these spaces. Thus, topologies need to be constructed using families
of seminorms, or by other means (in the case of @). This is out of the scope of
this document, but it’s a standard construction that can be easily found elsewhere
(e.g., Gasqued-Witomski).

The crucial topological property that we need is the definition of limit of a se-
quence of distributions. We say that that a sequence 7, of distributions con-
verges to a distribution 7" when

Tw(p) — T () for any test function ¢

Thus, the limit of distributions is reduced to the limit of scalars. A sequences
of distributions is convergent if and only if it is “pointwise” convergent. This is
much more simple than the case of functions, where there are several different
and incompatible notions of convergence.

A distribution is, by definition, a linear map on the space of test functions. The
following notations are common for the result of applying a distribution 7" to a
test function ¢:

T(e) = (T.g) = / Ty = / T(x)p(x)dx

The last notation is particularly insidious, because for a generic distribution, 7°(x)
does not make sense. However, it is an abuse of notation due to the following
lemma:

Lemma. Let f be a locally integrable function (slowly growing, or compactly
supported). Then the linear map

770 [ feeds

is well-defined and continuous on & (or 8, or €). Thus it is a distribution.

The lemma says that any function can be interpreted as a distribution. This is very
important, because all the subsequent definitions on the space of distributions are
crafted so that, when applied to a function they have the expected effect.

For example, the derivative of a distribution 7" is defined by
(T,’ ‘P) = <T’ _()0,>

Two observations: (1) this definition makes sense, because ¢ is always a €* func-
tion, and so is —¢’. And (2) this definition extends the notion of derivative when T
corresponds to a derivable function f. We write

TfrZTf/

to indicate that the proposed definition is compatible with the corresponding con-
struction for functions.

13



A similar trick is used to extend the shift 7,, scale {, and symmetry o of functions
(where a > 0):

T.f(x) =f(x—a)
Lof (%) = f(x/a)

of(x) = f(-x)
to the case of distributions:
<TaTv ¢> = <T’ T—a()0>
(CT@) =(T,a )
(o T, ¢) =T, 0¢)

and the compatibility can be checked by straightforward change of variable.

After regular functions, the most important example of distribution is the Dirac
delta, defined by 6(¢) := ¢(0). In the habitual notation we write

/ﬁuquxzﬂm

because this form is very amenable to changes of variable. An equivalent definition
is 6(x) = H’(x) where H is the indicator function of positive numbers. This makes
sense because H is locally integrable, and its derivative is well-defined in the sense
of distributions. The Dirac delta belongs to all three spaces @’, §” and €’.

Using Diracs, we can define many other distributions, by applying shifts, deriva-
tives, and vector space operations. For example, the Dirac comb is defined as

Z(x) = Z 5(x — n)
nez
where the infinite series is to be interpreted as a limit. This is well-defined in &’
(where the sum is finite due to the compact support of the test function) and §’
(where the series is trivially convergent due the rapid decrease of the test function)
but not on €’ (where the series is not necessarily convergent for arbitrary test
functions, for example ¢ =1 € §).

We can do other crazy things, like 3,-( 6™ (¥ — ), which is also well defined when
applied to a test function. But we cannot do everything. For example ¥, 6™ (x)
is not well defined, because there is not a guarantee that the sum of all derivatives
of a test function at the same point converges.

4.3 Fourier transform of distributions
How to define the Fourier transform of a distribution? We need to find a definition

that extends the definition that we already have for functions, thus T; =T 7 It is
easy to check that the definition

<ﬁw> = (T, o)
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does the trick, because it corresponds to Plancherel Theorem when T is a locally
integrable function.

However, notice that this definition does not make sense in @’: if ¢ € 9, then it
has compact support, so its Fourier transform does not, thus @ ¢ P.

The space S, called the Schwartz space, has the beautiful property of being in-
variant by Fourier transforms. Indeed, the Fourier transform, with appropriate
normalization constants, is an L? isometry on 8. Thus, tempered distributions
are the natural space where to perform Fourier transforms.

Now, we can compute the Fourier transform, in the sense of distributions, of many
functions! For example, what is the Fourier transform of the function f(x) = 1?
This function is a temperate distribution, so it must have a Fourier transform,
doesn’t it? Indeed it does, and it can be easily found from the definitions:

1

@90(0)

(o) =1 = [ Fwax -

So, the Fourier transform of a constant is a Dirac!

By combining this result with the derivatives we can compute the Fourier transform
of polynomials. For example f(x) = x? has the property that f” is constant,
thus f” is a Dirac, and then f is the second derivative of a Dirac.

4-4 Sampling with Diracs

Can we compute the Fourier transform of f(x) = ¢* ? No, because it is not a
slowly growing function, and it does not correspond to any tempered distribution.

However, the function f(x) = ¢* is actually slowly growing (it is bounded), so it
has a Fourier transform as a tempered Distribution that is f (&) = 6(¢ —1). Using
trigonometric identities, we find the Fourier transforms of sin and cos, which are
also sums of Diracs:

C’O\S(g) — (5(Jc*1);(5(x+1)
S’i_l\l(é“) — 6(x—1)2—i6(x+1)

And, as we would say in Catalan, the mother of the eggd’} the Fourier transform
of a Dirac comb is another Dirac comb. I don not know how to prove this by
combining the identities above, but it has a simple proof by expressing the Dirac
comb as the derivative of a sawtooth function and applying it to a test function.

(typeset the computation)

1“La mare dels ous”, or in french “ou il git le liévre”. I do not know a similarly colorful expression
in english
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5 Spectral geometry

Spectral theory provides a brutal generalization of a large part of Fourier analy-
sis. We do away with the group structure (and thus with the possibility to have
convolutions, which are based on the action of the group). In exchange, we need
to work inside a compact space, endowed by a Riemannian metric. For example,
a compact sub-manifold of Euclidean space. The canonical example is .§ 1 that in
the classical case leads to Fourier series. Here, we recover all the results of Fourier
series (except those related to periodic convolution) for functions defined on our
manifold.

Let M be a compact Riemannian manifold (with or without boundary), and let A
be its Laplace-Beltrami operator, defined as A = *d * d, where d is the exterior
derivative (which is independent of the metric) and * is the Hodge duality be-
tween p-forms and d — p-forms (which is defined using the metric).

The following are standard results in differential geometry (see e.g. Warner’s
book chapter 6 https://link.springer.com/content/pdf/10.1007%
2F978-1-4757-1799-0_6.pdf)

(1) There is a sequence of (M) functions ¢, and positive numbers 1, — oo
such that

Ap, = —Appy

(2) The functions ¢,, suitably normalized, are an orthonormal basis of L*(M).

These results generalize Fourier series to an arbitrary smooth manifold 4. Any
square-integrable function f : M — R is written uniquely as

@)= fupal)

and the coefficients f,; are computed by

fn=/Mf<pn-

Some particular cases are the habitual Fourier and sine bases (but not the cosine
basis), bessel functions for the disk, and spherical harmonics for the surface of a
sphere.

M Pn -y
interval [0, 27] sin ("—2’”) n2 /4
circle St sin(n0), cos(n0) n?
square  [0,27]? sin (%) sin (%2) M
torus ($1H)? sin(nx) sin(my), . . . n® + m?
disk |r] <1  sin, cos(n8) Jo(Omn?) Pmn roots of J
sphere §? Y"(0,¢) ?+1

The eigenfunctions ¢, are called the vibration modes of M, and the eigenvalues 4,
are called the (squared) fundamental frequencies of M.
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Several geometric properties of M can be interpreted in terms of the Laplace-
Beltrami spectrum. For example, if M has £ connected components, the first £
eigenfuntions will be supported successively on each connected component. On a
connected manifold M, the first vibration mode can be taken to be positive ¢1 > 0,
thus all the other modes have non-constant signs (because they are orthogonal
to ¢1). In particular, the sign of ¢9 cuts M in two parts in an optimal way, it is
the Cheeger cut of M, maximizing the perimeter/area ratio of the cut.

The zeros of ¢, are called the nodal curves (or nodal sets) of M, or also the
Chladni patterns. If M is a subdomain of the plane, these patterns can be found
by cutting an object in the shape of M, pouring a layer of sand over it, and
letting it vibrate by high-volume sound waves at different frequencies. For most
frequencies, the sand will not form any particular pattern, but when the frequency
coincides with a v/, the sand will accumulate over the set [¢, = 0], which is
the set of points of the surface that do not move when the surface vibrates at this
frequency. In the typical case, the number of connected components of [¢, > 0]
grows linearly with z, thus the functions ¢, become more oscillating (less regular)
as m grows.

Generally, symmetries of M arise as multiplicities of eigenvalues. The Laplace-
Beltrami spectrum A1, A9, A3, . . . is closely related, but not identical, to the geodesic
length spectrum, that measures the sequence of lengths of all closed geodesics
of M. The grand old man of this theory is Yves Colin de Verdiére, student of
Marcel Berger.

Geometry is not in general a spectral invariant, but non-isometric manifolds with
the same spectrum are difficult to come by. The first pair of distinct but isospec-
tral manifolds was wound in 1964 by John Milnor, in dimension 16. The first
example in dimension 2 was found in 1992 by Gordon, Webb and Wolperd, and
it answered negatively the famous question of Marc Kac “Can you hear the shape
of a drum?. In 2018, we have many ways to construct discrete and continuous
families of isospectral manifolds in dimensions two and above.
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