
Linear Dithering

Consider the problem of converting a gray-scale image into a binary image, while
keeping as much as possible of the visual information. The two standard tech-
niques are thresholding and dithering.

The goal of this note is to show that thresholding and dithering are just two points
on a multidimensional continuum of binarization methods, that we call linear
dithering.

original image thresholding dithering linear dithering

1 Classic thresholding and dithering

Thresholding at the right level is surprisingly e�ective. It is often possible to find
a threshold that captures most of the relevant information in the image, even in
the case of extreme lighting conditions. Yet, it is clear than for some images it
will be impossible to find a single satisfactory threshold. Dithering (also called
error di�usion) is aimed at representing all the possible gray levels of the original
image, at the price of a small loss of resolution.

Look at this photo of a famous bongo player, for example. There is a strong spot
light righto into his face, and the rest of the image is very dark. I would say that it is
impossible to find a single threshold where the face and the hand are recognizable.
Yet there is! And quite easy to find manually, around the value of 87, for example.
We show also the results of Floyd-Sternberg dithering and the linear dithering
described below. Notice that Floyd-Sternberg dithering destroys all the texture of
the clothes, which is well-preserved by thresholding and linear dithering. (Too
well-preserved, in the last case, as it enhances the jpeg compression artifacts of
the original.)

1

i/bongos.jpg

bongos-bin.png

bongos-dit.png

2

bongos-lin.png

plambda i/bongos.jpg "87 > 255 *" -o bongos-bin.png

dither i/bongos.jpg bongos-dit.png

plambda i/bongos.jpg x,l | blur z 0.25 | plambda - '0 < 255 *' -o bongos-lin.png

2 Dithering with pre-processing

We can pre-process gray-scale images before dithering them. We consider two pre-
processings: a contrast change by a function of the form x 7→ tanh(λx)/tanh(λ),
and a linear �ltering of the original image that enhances its contrast. For sim-
plicity, here we assume that our input images are of zero mean and take values
on [−1, 1].

For the contrast change, notice two things. First, the λ -scaled tanh tends to a step
function as λ → ∞, and to the identity on [−1, 1] as λ → 0. Second, dithering
a binary image produces exactly the same image. Thus, just by composing the
dithering with a contrast change, we obtain a one-parameter family of methods
that contains pure dithering and pure binarization as particular cases.

3

In the figures below, the first row contains the result of applying the contrast
change, and the second row the dithering of each image.

λ = 0 λ = 3 λ = 7 λ = ∞

For the linear filtering, we consider a family of filters k of the form k̂ (ξ) = |ξ |µ

for µ ∈ [0, 2], acting over images of zero mean, suitably normalized to conserve
the second moment of the image. These filters interpolate continuously between
the identity (µ = 0) and minus the Laplacian operator (µ = 2). The case µ = 1
can be called linear retinex. For µ < 0, this is called the Riesz scale space.

4

µ = 0.1 µ = 0.5 µ = 1 µ = 2

Notice that the Laplacian is locally constant nearly everywhere, except just around
the edges. Thus, dithering this image results in a checkerboard pattern of density
50%, but with a characteristic bias around the edges which renders the structures
visible.

3 Thresholding with linear pre-processing

Now, forget a moment about the dithering step and consider only linear filtering
and thresholding. In modern parlance, thresholding with linear pre-processing
would be called single layer convolutional neural network with Heaviside activation
function.

More precisely, we take an image of zero mean, apply a linear filter, and threshold
the result at 0.

Let us see how changing shape of the kernel produces di�erent e�ects. We use
the following radial kernels (we omit the normalization factors in this table):
name formula
Gauss Gσ(r) = δ − exp −r

2

2σ2

Laplace Lσ(r) = δ − exp −rσ
Cauchy Cσ(r) = δ − 1

σ2+r 2

Riesz R̂σ(ρ) = ρ
σ

truncated inverse-log Zσ(r) = Tσ 1
log(r)

log-Cauchy Qσ(r) = − log(σ2 + r 2)

These filters are all positive, so the e�ect they produce is blurring the images. For
this application we apply them to the Laplacian of the input image (or, equiva-
lently, we filter the image by the Laplacian of these kernels).

5

G0.5 G1 G3

L0.5 L1 L3

C0.5 C1 C3

Z0.01 Z0.10 Z0.20 Z0.50

Y0.01 Y0.10 Y0.20 Y0.50

6

Q0.01 Q0.10 Q0.20 Q0.50

Notice that some of these images (e.g., Y20 and Q20) could pass ass “dithering”,
but with sharper edges. However, they are simply a thresholding of the image
after a linear filter, where the kernel has been chosen carefully.

This is just a small exploration of a huge family of linear dithering methods to
produce binary images, that contains thresholding and dithering by error di�usion
as particular cases.

This technique also works for color images, by treating each RGB channel in-
dependently, and producing a 3-bit palette at the end. Compared to traditional
dithering error di�usion, it allows a much higher resolution, at the price of a con-
siderable loss in color fidelity, due to saturation. However, the saturation is much
less than for a brutal per-channel binarization. See, for example, the blue eyes in
this color image:

dither i/barb.png barb-dit.png

plambda i/barb.png x,l | blur z 0.15 | plambda - '0 < 255 *' -o barb-lin.png

plambda i/barb.png 'x x%O50 > 255 *' -o barb-bin.png

i/barb.png

7

barb-dit.png

barb-lin.png

8

barb-bin.png

PS: all the experiments on this note are generated from comments extracted of the original
.tex source �le.

9

