
Gallery of single layer textures

Can a single-layer convolutional neural network hallucinate snowflakes when given
white noise as input? The answer is yes.

Here we show a gallery of textures created by such “single layer CNN”.

More precisely, the basic construction depends on three functions:

1. f a probability density on R

2. g ∈ L1
loc (R

2) a convolution kernel on the plane

3. h : R→ [0, 255] a monotonic tone mapping

To generate a random texture I , run the following algorithm

1. Build a white noise image n of distribution f .

2. Compute I = h ◦ (g ∗ n)

The function h is chosen to transport the histogram of g ∗ n into [0, 255]. For ex-
ample, a simplest color balance or an Otsu thresholding. The kernel g is typically
positive and radial, or a derivative of a radial function.

Note: This is a fully reproducible document. Each greyed-out section is the com-
plete script used to produce the corresponding image. All of them are drawings
over a blank canvas of arbitrary size:

plambda zero:768x768 "" -o canvas;

For numerical reasons, especially with non-positive kernels, some of the compu-
tations are performed in the frequency domain. Thus, sometimes it may not be
evident that there is a single linear filter. But all the textures in this page are
indeed single-layer.

1

1 Binary

plambda canvas randc | blur c 0.5 | plambda - 'x x%m > 255 *' -o binary.png

Comment: this is Cauchy white noise blurred with a Cauchy kernel, binarized at
the median value.

2

2 Disks

plambda canvas randc | blur disk 30 | qauto -p 1 - disks.png

Comment: This is Cauchy white noise blurred with a circular kernel, followed by
a simplest color balance that saturates 1% of the pixels.

3

3 Star�eld

plambda canvas randp | blur c 1 | qauto -p 1 - starfield.png

Comment: This is Pareto white noise blurred with a Cauchy kernel, followed by a
simplest color balance that saturates 1% of the pixels.

4

4 Blood

SIGMOID='2 * tanh 1 + 2 /'

RED='dup 1 rot - rot 1 1 1 join3 * 0.7 0.1 0.1 join3 * + 255 *'

plambda canvas randp|blur c 1|plambda - "x x%O80 - $SIGMOID $RED" -o blood.png

Comment: this is exactly the same image as starfield.png, but with a red palette.

5

5 Islands

plambda canvas randu | blur -s z .4 | plambda - 'x x%O80 > 255 *' -o islands.png

Comment: uniform white noise, blurred by a kernel of the form 1/log(r), binarized
to the 80th quantile.

6

6 Clouds

SIGMOID='4e4 * tanh 1 + 2 /'

BLUE='dup 1 - -1 * 0 .5 1 join3 * + 255 *'

plambda canvas randg|blur o 0.1|plambda - "x x%m - $SIGMOID $BLUE" -o clouds.png

Comment: white Gaussian noise, blurred by a kernel of the form log(r), plus
a tanh contrast change centered around the median value. Finally, a blue palette
is applied.

7

7 Multiscale

plambda canvas randg | fft | plambda ':R /' | ifft | qauto - multiscale.png

Comment: this is fractal or pink noise, obtained by forcing a spectral decay of the
form 1/|ξ |.

8

8 Snow�akes

plambda canvas ":x :y join 6 0 join cpow cimag :r 9 ^ / randc 3 ^ join" |\

fft | plambda "halve cprod" | ifft | qeasy 2e17 5e17 - snowflakes.png

Comment: this is a Cauchy-like white noise, filtered by the non-positive ker-

nel k (x, y) =
re{(x+i y)6}

(x2+y2)
9
2
, and a threshold that keeps only the highest positive

values.

9

9 Dandelions

KERNEL=':x :y join 13 0 join cpow creal :r 13.5 ^ / 3 fmax 3 -'

PALETTE='dup rot 128 2 / + 0 join3'

plambda canvas "$KERNEL randp join" | fft | plambda 'halve cprod' | ifft |\

qeasy 0 3e4 | plambda - "$PALETTE" -o dandelions.png

Comment: the same construction as snowflakes.png with a di�erent degree of poly-
nomial and a green color palette.

10

10 Heptachords

KERNEL=':x :y join 7 0 join cpow creal :r 8 ^ / 3 fmax 3 -'

plambda canvas "$KERNEL randp join" | fft | plambda 'halve cprod' | ifft |\

qeasy 1e5 9e5 - heptachords.png

Comment: yet another polynomial kernel with a carefully selected contrast
change.

11

11 Neurons

plambda canvas randp | blur l 10 | plambda 'x,nf' | qeasy 0.4 0 - neurons.png

Comment: This is Pareto noise filtered by the derivative of Laplace kernel. The
final contrast change enhances the near-zero part of the image.

12

12 Sponge

plambda canvas randp | blur i 0.3 | plambda 'x,nf' | qeasy 0.1 0 - sponge.png

Comment: This is the same as neurons.png, but using a Shepard instead of a
Laplacian kernel.

13

13 Lava

plambda canvas 'randp randp randp join3' | blur i 0.3 | \

plambda 'x,nf vmin' | qauto - lava.png

Comment: Minimum of several instances of Pareto noise filtered by the derivative
of Shepard kernel.

14

14 Folds

plambda canvas randg | blur l 30 | plambda 'x,nf -1 *'|qauto -p 0 - folds.png

Comment: this is white Gaussian noise blurred by the derivative of a large Laplace
kernel. The resulting, nearly constant image, is then stretched to span a visible
dynamic range.

15

15 Stucco

plambda canvas 'randp sqrt' | blur l 2 | plambda 'x,S' | qauto -p 1 - stucco.png

Comment: this is the smoothed directional derivative of a high-variance white
noise.

16

16 Blobs

plambda canvas 'randu randu randu randu randu nstack njoin' | blur g 20 |\

plambda vmax | qauto -p 0.1 - blobs.png

Comment: this is the max of four Perlin noises.

17

17 Combined

plambda neurons.png starfield.png "dup join3" -o combined.png

Comment: since many of the images above arise from exactly the same instance
of white noise, they are closely related. Thus, they can be combined as di�erent
channels of a color image to obtain funny e�ects.

18

plambda starfield.png neurons.png sponge.png 'join3 -1 1 1 join3 *' |\

qauto -i - combined2.png

Comment: in color images, the choice of a color palette or another can have
dramatic e�ects.

19

fftshift dandelions.png|plambda - starfield.png -|blur L 20|qauto -i - comb3.png

20

plambda dandelions.png starfield.png + | qauto -i -p 0.3 - combined4.png

For unrelated images, the e�ect is less striking.

18 Appendix: Technical details

The programs required to run these scripts are available in imscript: http://

github.com/mnhrdt/imscript.

Here are the help messages of the four main programs:

qauto

Qauto quantizes an image into [0,255].

The image is trasformed by an affine contrast change I -> a*I + b

and then the colors are saturated and quantized into [0,255].

The parameters (a,b) of the contrast change are computed to statisfy

certain conditions. By default, they are chosen so that 5% of the pixels

are saturated.

Usage: qauto in.tiff out.png

or: qauto in.tiff > out.pnm

or: cat in.tiff | qauto > out.pnm

Options:

-p X use a percentile of X% (default X=5)

-f do not quantize the output, only rescale the values

-i treat each pixel dimension independently

-h display short help message

--help display longer help message

Examples:

qauto in.tiff out.png Quantize an image by simplest color balance.

qauto -i in.png out.png Remove color biases

blur

Blur convolves the input image by the requested positive kernel.

Only the first letter of the kernel name is considered.

If the name of the kernel is uppercase, it subtracts the result

from the original image.

Usage: blur KERNEL SIZE in.tiff out.tiff

or: blur KERNEL SIZE in.tiff > out.tiff

or: cat in.tiff | blur KERNEL SIZE > out.tiff

Kernels:

square a square block of the given radius

disk a rasterized disk of the given radius

gauss a Gaussian kernel of the given variance

laplace a Laplace kernel of the given variance

cauchy a Cauchy kernel of the given scale

q Log-cauchy kernel

u "good-cauchy"

p powerlaw

21

http://github.com/mnhrdt/imscript
http://github.com/mnhrdt/imscript

a pareto

i inverse distance (useful for Shepard interpolation)

y inverse distance (with different parameter normalization)

r Land

z inverse log-distance

t r^2 log(r) (useful for biharmonic interpolation)

o log(r)

Options:

-z zero boundary

-s symmetrized boundary

-p periodic boundary

Examples:

blur g 1.6 Smooth an image by a slight amount

blur C 1 | qauto Linear retinex

plambda - "x,l -1 *" | blur i 0.25 Laplacian square root

plambda - "x,l" | blur z 0.25 | plambda - "0 >" Linear dithering

plambda

Plambda evaluates an expression with images as variables.

The expression is written in reverse polish notation using common

operators and functions from `math.h'. The variables appearing on the

expression are assigned to each input image in alphabetical order.

EXPRESSIONS:

A "plambda" expression is a sequence of tokens.

Tokens may be constants,

variables, or operators. Constants and variables get their value

computed and pushed to the stack. Operators pop values from the stack,

apply a function to them, and push back the results.

CONSTANTS: numeric constants written in scientific notation, and "pi"

OPERATORS: +, -, *, ^, /, <, >, ==, and all the functions from math.h

LOGIC OPS: if, and, or, not

VARIABLES: anything not recognized as a constant or operator. There

must be as many variables as input images, and they are assigned to

images in alphabetical order. If there are no variables, the input

images are pushed to the stack.

All operators (unary, binary and ternary) are vectorizable. Thus, you can

add a scalar to a vector, divide two vectors of the same size, and so on.

The semantics of each operation follows the principle of least surprise.

Some "sugar" is added to the language:

Predefined variables (always preceeded by a colon):

:i horizontal coordinate of the pixel

:j vertical coordinate of the pixel

:w width of the image

:h heigth of the image

:n number of pixels in the image

:x relative horizontal coordinate of the pixel

:y relative horizontal coordinate of the pixel

:r relative distance to the center of the image

22

:t relative angle from the center of the image

:I horizontal coordinate of the pixel (centered)

:J vertical coordinate of the pixel (centered)

:P horizontal coordinate of the pixel (phased)

:Q vertical coordinate of the pixel (phased)

:R centered distance to the center

:L minus squared centered distance to the center

:W width of the image divided by 2*pi

:H height of the image divided by 2*pi

Variable modifiers acting on regular variables:

x value of pixel (i,j)

x(0,0) value of pixel (i,j)

x(1,0) value of pixel (i+1,j)

x(0,-1) value of pixel (i,j-1)

x[0] value of first component of pixel (i,j)

x[1] value of second component of pixel (i,j)

x(1,2)[3] value of fourth component of pixel (i+1,j+2)

Comma modifiers (pre-defined local operators):

a,x x-derivative of the image a

a,y y-derivative

a,xx second x-derivative

a,yy second y-derivative

a,xy crossed second derivative

a,l Laplacian

a,g gradient

a,n gradient norm

a,d divergence

a,S shadow operator

a,xf x-derivative, forward differences

a,xb x-derivative, backward differences

a,xc x-derivative, centered differences

a,xs x-derivative, sobel

a,xp x-derivative, prewitt

etc

Stack operators (allow direct manipulation of the stack):

del remove the value at the top of the stack (ATTTOS)

dup duplicate the value ATTTOS

rot swap the two values ATTTOS

split split the vector ATTTOS into scalar components

join join the components of two vectors ATTOTS

join3 join the components of three vectors ATTOTS

njoin join the components of n vectors

halve split an even-sized vector ATTOTS into two equal-sized parts

nstack current number of elements in the stack (useful with njoin)

Magic variable modifiers (global data associated to each input image):

x%i value of the smallest sample of image x

x%a value of the largest sample

x%v average sample value

x%m median sample value

x%s sum of all samples

x%I value of the smallest pixel (in euclidean norm)

x%A value of the largest pixel

x%V average pixel value

x%S sum of all pixels

x%Y component-wise minimum of all pixels

x%E component-wise maximum of all pixels

x%qn nth sample percentile

x%On component-wise nth percentile

23

x%Wn component-wise nth millionth part

x%0n component-wise nth order statistic

x%9n component-wise nth order statistic (from the right)

Random numbers (seeded by the SRAND environment variable):

randu push a random number with distribution Uniform(0,1)

randn push a random number with distribution Normal(0,1)

randc push a random number with distribution Cauchy(0,1)

randl push a random number with distribution Laplace(0,1)

rande push a random number with distribution Exponential(1)

randp push a random number with distribution Pareto(1)

rand push a random integer returned from rand(3)

Vectorial operations (acting over vectors of a certain length):

topolar convert a 2-vector from cartesian to polar

frompolar convert a 2-vector from polar to cartesian

hsv2rgb convert a 3-vector from HSV to RGB

rgb2hsv convert a 3-vector from RGB to HSV

xyz2rgb convert a 3-vector from XYZ to RGB

rgb2xyz convert a 3-vector from RGB to XYZ

cprod multiply two 2-vectrs as complex numbers

cexp complex exponential

cpow complex power

mprod multiply two 2-vectrs as matrices (4-vector = 2x2 matrix, etc)

vprod vector product of two 3-vectors

sprod scalar product of two n-vectors

mdet determinant of a n-matrix (a n*n-vector)

mtrans transpose of a matrix

mtrace trace of a matrix

minv inverse of a matrix

vavg average value of a vector

vsum sum of the components of a vector

vmul product of the components of a vector

vmax max component of a vector

vmin min component of a vector

vnorm euclidean norm of a vector

vdim length of a vector

Registers (numbered from 1 to 9):

>7 copy to register 7

<3 copy from register 3

Usage: plambda a.png b.png c.png ... "EXPRESSION" > output

or: plambda a.png b.png c.png ... "EXPRESSION" -o output.png

or: plambda -c num1 num2 num3 ... "EXPRESSION"

Options:

-o file save output to named file

-c act as a symbolic calculator

-h display short help message

--help display longer help message

Examples:

plambda a.tiff b.tiff "x y +" > sum.tiff Compute the sum of two images.

plambda -c "1 atan 4 *" Print pi

plambda -c "355 113 /" Print an approximation of pi

24

