The standard PDE on a manifold

We state and solve the standard second-order linear PDE on a compact Rieman-
nian manifold: the potential, diffusion, diffraction and wave equations.

1 The Laplace-Beltrami spectrum

Let M be a compact Riemannian manifold (with or without boundary), and let A
be its Laplace-Beltrami operator, defined as A = *d * d, where d is the exterior
derivative (which is independent of the metric) and = is the Hodge duality be-
tween p-forms and d — p-forms (which is defined using the metric).

The following are standard results in differential geometry (see e.g. Warner’s
book chapter 6 |https://link.springer.com/content/pdf/10.1007%
2F978-1-4757-1799-0_6.pdf)

(1) There is a sequence of € (M) functions ¢, and positive numbers 1, — oo
such that

Ap, = —Appy

(2) The functions ¢,, suitably normalized, are an orthonormal basis of L*(M).

These results generalize Fourier series to an arbitrary smooth manifold 4. Any
square-integrable function f : M — R is written uniquely as

@)= fupal)

and the coefficients f, are computed by

fn=/Mf90n-

Some particular cases are the habitual Fourier and sine bases (but not the cosine
basis), bessel functions for the disk, and spherical harmonics for the surface of a
sphere.


https://link.springer.com/content/pdf/10.1007%2F978-1-4757-1799-0_6.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4757-1799-0_6.pdf
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The eigenfunctions ¢, are called the vibration modes of M, and the eigenvalues 4,
are called the (squared) fundamental frequencies of M.

Several geometric properties of M can be interpreted in terms of the Laplace-
Beltrami spectrum. For example, if M has £ connected components, the first £
eigenfuntions will be supported successively on each connected component. On a
connected manifold M, the first vibration mode can be taken to be positive ¢1 > 0,
thus all the other modes have non-constant signs (because they are orthogonal
to ¢1). In particular, the sign of ¢9 cuts M in two parts in an optimal way, it is
the Cheeger cut of M, maximizing the perimeter/area ratio of the cut.

The zeros of ¢, are called the nodal curves (or nodal sets) of M, or also the
Chladni patterns. If M is a subdomain of the plane, these patterns can be found
by cutting an object in the shape of M, pouring a layer of sand over it, and
letting it vibrate by high-volume sound waves at different frequencies. For most
frequencies, the sand will not form any particular pattern, but when the frequency
coincides with a v/, the sand will accumulate over the set [¢, = 0], which is
the set of points of the surface that do not move when the surface vibrates at this
frequency. In the typical case, the number of connected components of [¢, > 0]
grows linearly with z, thus the functions ¢, become more oscillating (less regular)
as n grows.

Generally, symmetries of M arise as multiplicities of eigenvalues. The Laplace-
Beltrami spectrum A1, A9, A3, . . . is closely related, but not identical, to the geodesic
length spectrum, that measures the sequence of lengths of all closed geodesics
of M. The grand old man of this theory is Yves Colin de Verdiére, student of
Marcel Berger.

Geometry is not in general a spectral invariant, but non-isometric manifolds with
the same spectrum are difficult to come by. The first pair of distinct but isospec-
tral manifolds was wound in 1964 by John Milnor, in dimension 16. The first
example in dimension 2 was found in 1992 by Gordon, Webb and Wolperd, and
it answered negatively the famous question of Marc Kac “Can you hear the shape
of a drum?’. In 2018, we have many ways to construct discrete and continuous
families of isospectral manifolds in dimensions two and above.

2 The standard equations and their explicit solu-
tions

The classical linear second order equations (potential, heat, wave and
Schrodinger) are all defined in terms of the Laplacian operator in space.



Thus, they can be defined readily on an arbitrary Riemannian manifold M. If M
is compact, the solution can be found explicitly in terms of the Laplace-Beltrami
eigenfunctions. Henceforth we will call the expression of a function f : M — R
as f = ), fupn the Fourier series of f, the numbers f, the Fourier coefficients
of f and so on.

The simplest case is Poisson equation
Au=f

The solution is found by expressing z and f as Fourier series and identifying the
coeflicients:

u(x) = ) =" gulx)

Notice that since 1, — oo, the Fourier coefficients of u tend to zero faster than
those of f, thus u is more regular than f (this is obvious from the equation,
since Au is less regular than u).

Another simple case is the screened Poisson equation
Au=au+f

and the solution is found by the same technique:

w)= Y T

a +

This is like the regular Poisson equation, but the regularity is enhanced by a.

The next case is the heat equation, also called diffusion or smoothing equation:

u; = Au (x,8) e M x[0,T]
u(x,0)=gx) xeM

This equation requires an initial condition g. The solution is found by separation
of variables, which leads to a trivial ODE, resulting in

u(x, 1) = ) g gu(x)

It is immediate to check that this expression is a solution of the heat equation with
initial condition g. Several properties of the solution are visible from this form,
most notably that u(x, o) = u; if 11 = 0, or 1 otherwise. A pure vibration mode ¢,
decays exponentially to zero, and the speed of the exponential decay is A,.

By combining the heat and Poisson equations, we get the heat equation with
source:

u=Au+f (x0)eMx|[0,T]

u(x,0)=gx) xeM

whose solution is

u(x,t) = Z (/{—" + gne_/l”t) @a(x)

n n



The solution of the reverse heat equation

u; = —Au (x,0) e M x[0,T]
u(x,0)=gx) xeM

is formally similar

u(x 1) = )" gue™'ou(x)

but notice that it blows up, often in a finite time.

Both direct and reverse heat equations are of the form #, = ¢Au, whose solution
is u(x,t) = Y, gne “‘"'¢,(x). The constant ¢ is the speed of transmission of heat.
An intermediate behaviour between ¢ > 0 and ¢ < 0 happens when ¢ = i.

The linear Schrédinger equation, also called diffraction equation

w; = iAw (x,8) e M xX[0,T]
w(x,0)=gkx) xeM

describes the evolution of a complex-valued function w. It can be interpreted as
a system of two coupled real equations by writing w = u + iv (here, assuming a
real-valued initial condition g):

u; = —Av (x,0) e M x[0,T]
v; = Au (x,8) e M x[0,T]
u(x,0)=gkx) xeM
v(x,0)=0 xeM

The solution is then

w(x 1) = > gne”" gu(x)
n
or, in terms of # and v:
u(x’ t) = Zn 4n COS (/lnt) ga,,(x)
o(x, 1) = X, —gnsin(Ant) pn(x)

thus, a pure vibration mode ¢, oscillates periodically, at a frequency A,. In terms
of |w|, this phenomenon is called diffraction.

The wave equation is
Uy = Au (x,t) e M x[0,T]

u(x,0)=g(x) xeM
u(x,0)=h(x) xeM

notice that it requires an initial condition and an initial speed. By linearity, we
can deal with these separately, and then sum the results. The solution is then

u(x, t) = Zn: (g,, cos (\//l_,,t) + jT"_n sin (\//l_nt)) ©a(x)



Thus, a pure vibration mode ¢, oscillates with frequency vA,.
Finally the wave equation with a force is the most complex case we treat here:
uy=Au+f (xt)eMx|[0,T]

u(x,0)=g(x) xeM
u;(x,0)=h(x) xeM

The solution

u(x,t) = Z (f" + gu COS (\//l_,,t) +

I

\Zl— sin (‘//l_nl)) ®n(x)

n

is found by the same methods as above.

3 Discretization and implementation in Octave

Except in emblematic cases (rectangle, torus, sphere) the eigenfunctions of an
arbitrary manifold M do not have a closed-form expression.

For practical computations, we are thus restricted to numerical methods in the
discrete case. The most convenient form for this discretization is to representd M
as a graph with weights in their edges. In this context, we have the following
objects

* The weighted graph G = (V, E) where V is a set of n vertices.
e The Laplacian matrix L of this graph, which is of size n X n

e The space R” is identified with functions ¥ — R. Thus R” is the discrete
version of 6 (M).

typically L will be a matrix of rank » —1 with a constant eigenvector of eigenvalue
o.

We can find the eigensystem of L by calling eigs(L) in octave, and transfer the so-
lutions obtained above using the obtained eigenvectors and eigenvalues. However,
in most cases the solution is more easily obtained by solving a linear problem.

To fix the ideas we start with a concrete example: a square domain with flat metric.
The following is a complete program that computes the chladni figures of a square
domain.

128;

sparse(l:w-1, 2:w, 1, w, w);

kron(p, speye(w)) + kron(speye(w), p);
A+A° - diag(sum(A+A?));

£,1] = eigs(L, 64, "sm");

width and height of the domain
path graph of length p
kronecker sum

graph laplacian

eigs of smallest magnitude

W
P
A
L
L

H# H o H

After running this code, the ith eigenfunction is £(:,i) and the eigenvalues are
on diag(l).
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p = sparse tw-1, :w, , w, W) - speye w); # path graph of length p
(w)) (W), p); # kronecker sum
# graph laplacian

[f,l] = eigs(L, 64, "sm"); # eigs of smallest magnitude
v_
m . ._
. II _.
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